True random number generation

Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

– John von Neumann (1951)

The generation of random numbers is too important to be left to chance. – Robert R. Coveyou

B. Škorić, Physical Aspects of Digital Security, Chapter 3

True random numbers

Not Pseudo-Random Number Generator

- PRNG is algorithm operating on some seed
- TRNG measures physical state of random system

<u>Usual procedure</u>

- measurement of truly random system
- apply algorithm improving uniformity
- optional: then use as seed in PRNG

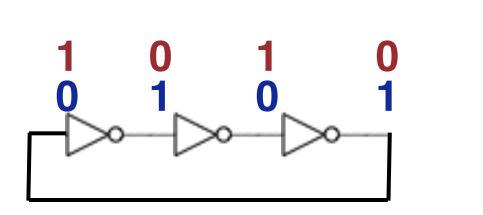
Sources of randomness

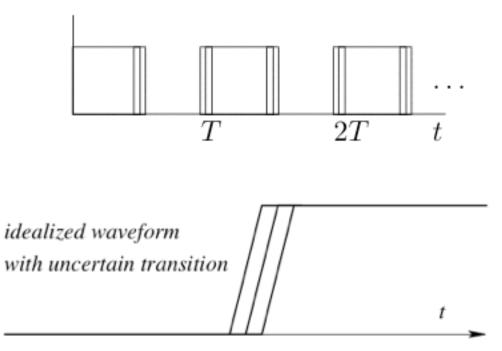
- noisy resistors
- ring oscillators
- avalanche diodes
- metastable flipflops
- antenna noise
- acoustic noise
- nuclear decay
- unstable lasers

Ring oscillator

Odd number of inverters in circular configuration

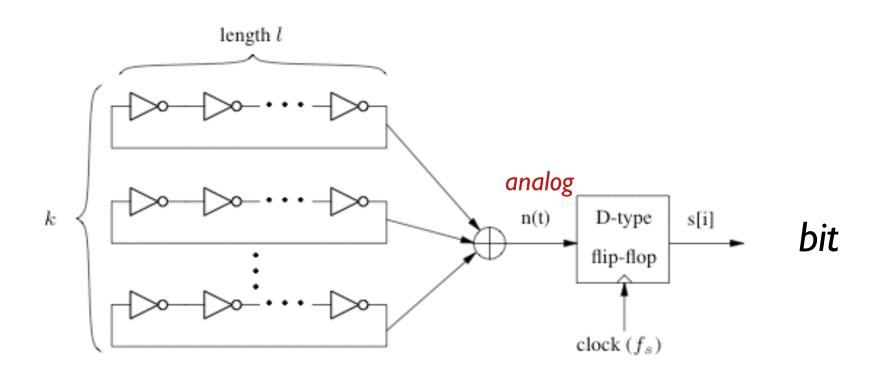
- conflicting logical state
- oscillation between 0/1 state
- propagation time partly random
- exact timing very sensitive to thermal noise
 - 'jitter'





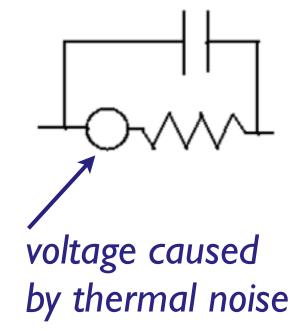
Extracting randomness from jitter

- XOR several oscillators (analog operation)
- sample the analog signal
- force to logical 0 or 1
 - exact time of flank is Gaussian-distributed
- fill rate f: fraction of time where signal is unpredictable
 - can be tuned by choosing k, l



Noisy resistor

Equivalent circuit for resistor:



Amplitude has Gaussian distribution

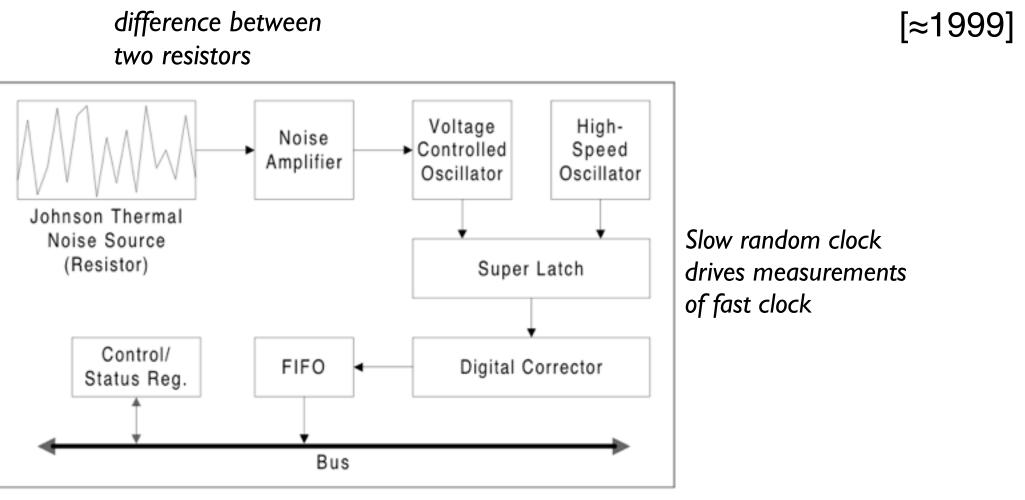
 $\langle V^2 \rangle = 4kT R \Delta f$

- k = Boltzmann constant
- T = temperature (Kelvin)
- R = resistance
- Δf = measured range of frequencies

Johnson & Niquist, 1928

The Intel RNG

Component of the Intel 80802 chip



- improved version of von Neumann algorithm
- variable bit rate
- 75 Kbit/s after post-processing

Radio-active decay

- Unstable atomic nucleus
- Exact moment of decay unpredictable
- λ = prob of decay per time unit
- Pr[nucleus still exists] = $exp(-\lambda t)$.
- Very tamper-proof!

Start with N nuclei; Count #clicks in time Δt . Pr[#clicks is k] = $e^{-N\lambda \Delta t} \frac{(N\lambda \Delta t)^k}{k!}$ Poisson distribution

Algorithms for randomness extraction

Known continuous distribution f(x)

- generic procedure
- uses cumulative distr. function (cdf)

Known discrete distribution

- cdf + binning
- von Neumann algorithm
- piling it up: XOR-ing bits together
- resilient functions

Unknown discrete distribution

- universal hash functions
- q-wise independent hashing

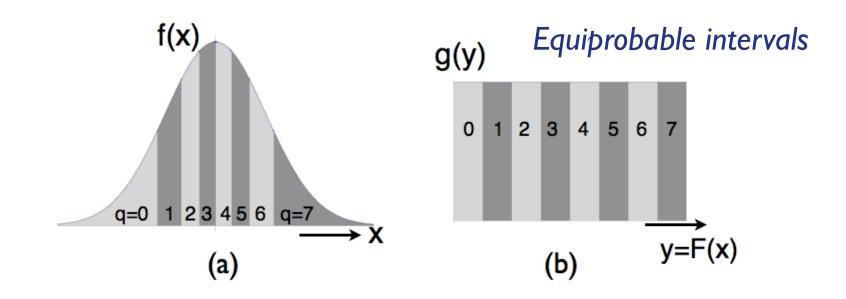
Known continuous distribution

Continuous random variables

- X ~ f
- Cumulative distribution function F

* Prob[X < x] = F(x).

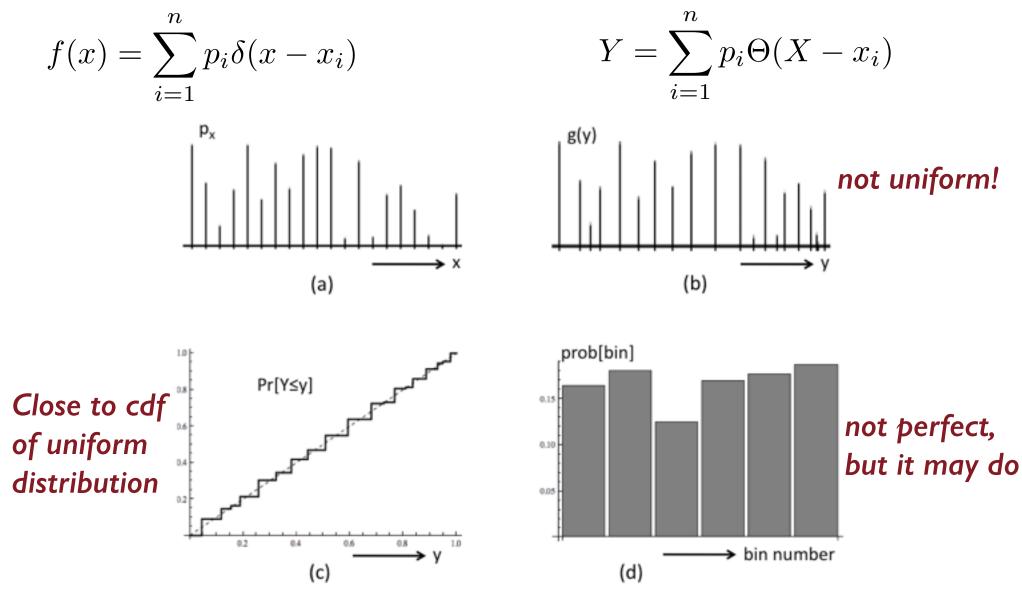
• The variable Y = F(X) is uniform!



Known discrete distribution

Discrete random variables

Let's try the cdf trick



von Neumann algorithm

Source = stream of bits from biased coin. How to remove the bias?

Look at input pairs (b₁, b₂)

 $b_1 = b_2$: no output $b_1 \neq b_2$: output b_1 .

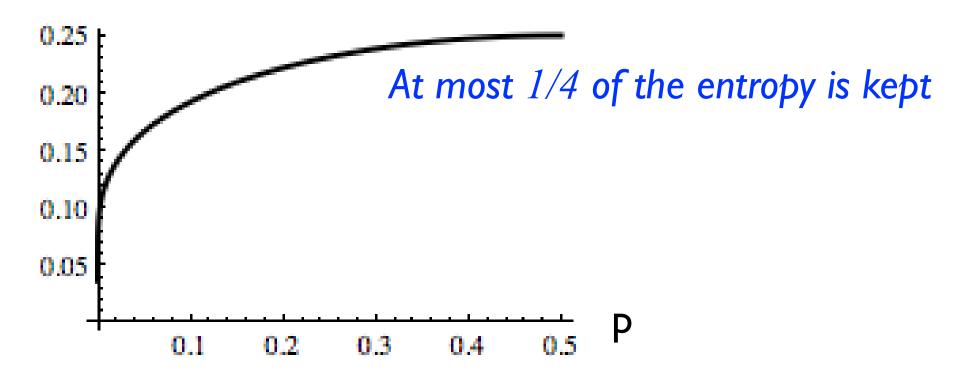
Ьı	b ₂	output
0	0	
0		0
	0	I
I	Ι	

Question:

- 1. Why does this work?
- 2. How much entropy is lost?

von Neumann algorithm: entropy loss

Fraction of retained entropy p(1-p)/h(p)



Improved von Neumann

input	Neumann	improved
0000	-	-
0001	0	00
0010	1	10
0011	-	0
0100	0	01
0101	00	00
0110	01	01
0111	0	01
1000	1	11
1001	10	10
1010	11	11
1011	1	11
1100	-	1
1101	0	00
1110	1	10
1111	-	-

- generates more bits
- less wasteful

Enumeration of permutations

$x \in \{0,1\}^n$ containing t 1s

Assign a label L to the permutation that turns $\underbrace{11\cdots 1}_{t}\underbrace{0\cdots 0}_{n-t}$ into x.

L is uniform on $\{0, \dots, \binom{n}{t} - 1\}$.

Numerical example: n = 16t = 5 or 11 Original entropy $\approx 16 h(5/16) \approx 14.3$

$$\binom{n}{t} = 4368 = 2^{12} + 272$$

L $\in \{0, \dots, 4367\}$

If L > 4095: No output! If L < 4096: Output binary representation of L.

This yields 12 perfect bits with prob. 4096/4368 and no output with prob. 272/4368. → On average 11.3 bits

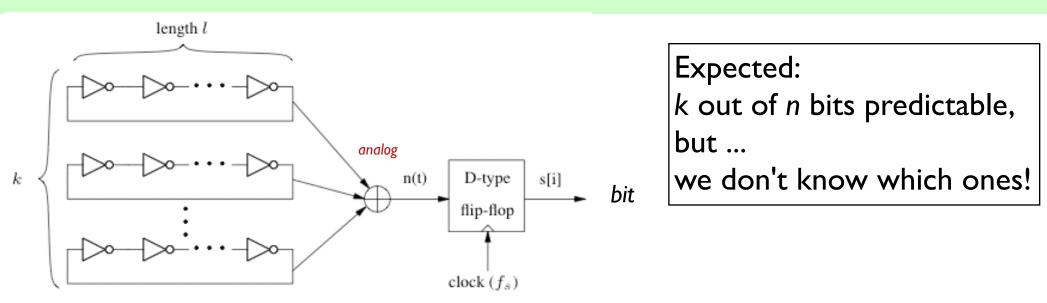
Piling up lemma

$$\begin{split} Y &= X_1 \oplus X_2 \oplus \ldots \oplus X_n \\ \text{bias} \quad & \alpha_i \ = \ \Pr[X_i = 1] - \Pr[X_i = 0] \\ & |\alpha_i| \le 1 \end{split}$$

Combined bias $Pr[Y=1] - Pr[Y=0] = (-1)^{n-1} \prod_i \alpha_i$

- reduced bias
- even one occurrence $\alpha_i=0$ already gives unbiased Y.
- but ... lots of entropy wasted

Resilient functions



Post-processing

- Apply *resilient* function Ψ insensitive to *k* bits
- Def. of [n,m,k]-resilient:
 - $x \in \{0,1\}^n$, $\Psi(x) \in \{0,1\}^m$. Fix any k bits of x.
 - Prob[$\Psi(X)=y \mid k \text{ bits of } X \mid s \text{ uniform on } \{0,1\}^m$.
- Can be realized using error-correcting code

Unknown discrete distribution

Worst case: Unknown distribution

Definition of a strong extractor "Ext"

for source min-entropy *m*, length ℓ and non-uniformity ϵ :

- Given a source X with $H_{\infty}(X) \ge m$
- uniformly drawn public randomness R
- $Z = Ext(X, R) \in \{0, 1\}^{\ell}$.

$$\mathbb{E}_r \Delta(Z | R = r; U_\ell) \leq \varepsilon$$

$$(1)$$
Uniform on {0,1}^\ell

In words: Ext(X,R), for known R, is ε away from uniform.

Universal hash functions

Definition:

<u>Universal family of hash functions</u> $\{\Phi_r\}$

- Functions Φ_r from \mathscr{X} to \mathcal{T} .
- Random seed R, uniformly chosen
- For any fixed x, x' with $x' \neq x$:

$$\operatorname{Prob}[\Phi_R(x) = \Phi_R(x')] \le 1/|\mathcal{T}|$$

Existence of univ. hash functions guarantees existence of strong extractors for certain parameter range!

We will see this in a couple of slides ...

Almost-universal hash functions

Definition 3.11 (Almost universal family of hash functions) Let $\eta \geq 0$ be a constant. Let \mathcal{R} , \mathcal{X} and \mathcal{T} be finite sets. Let $\{\Phi_r\}_{r\in\mathcal{R}}$ be a family of hash functions from \mathcal{X} to \mathcal{T} . The family $\{\Phi_r\}_{r\in\mathcal{R}}$ is called η -almost universal iff, for R drawn uniformly from \mathcal{R} , it holds that

 $\operatorname{Prob}[\Phi_R(x) = \Phi_R(x')] \le \eta$

for all $x, x' \in \mathcal{X}$ with $x' \neq x$.

universal for $\eta = 1/|\mathcal{T}|$

Leftover hash lemma

Theorem 3.12 (Leftover hash lemma) Let $X \in \mathcal{X}$ be a random variable. Let $\delta \geq 0$ be a constant. Let $F : \mathcal{X} \times \mathcal{R} \to \{0,1\}^{\ell}$ be a $2^{-\ell}(1+\delta)$ -almost universal family of hash functions, with seed $R \in \mathcal{R}$. Then

$$\Delta(F(X,R)R; \ U_{\ell}R) \le \frac{1}{2}\sqrt{\delta + 2^{\ell - \mathsf{H}_{2}(X)}},\tag{3.17}$$

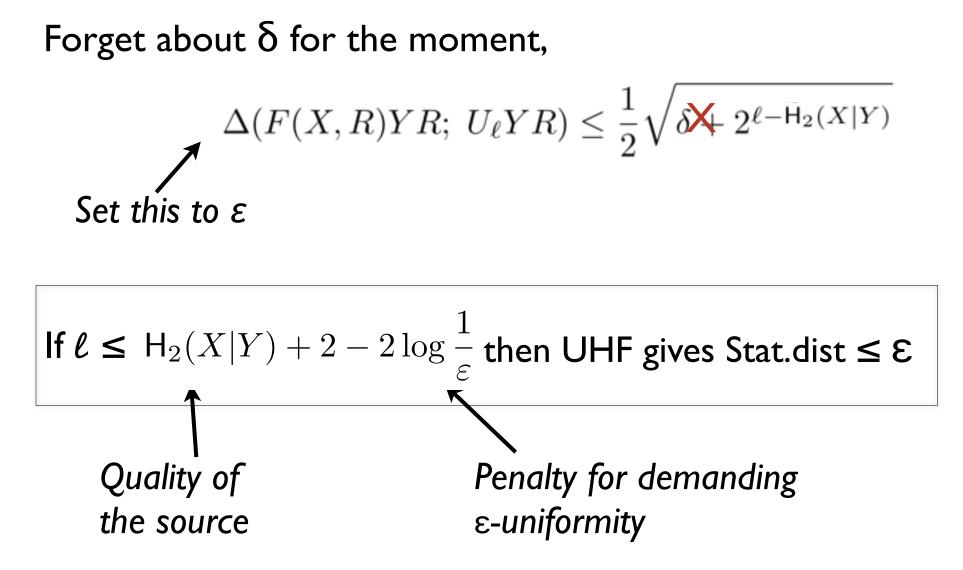
Distance of F(X,R) from uniformity, given R

Proof is rather long, see appendix in lecture notes.

The H_2 is the Rényi entropy of order 2,

$$H_2(X) = -\log \sum_x (p_x)^2$$

When is extractor guaranteed to exist?



Lots of entropy wasted!

q-wise independent hashing

- Very recent result [Dodis et al. 2014].
- Limited use compared to UHF
 - MACs, signatures, keyed hashes

Definition similar to UHF:

Definition 3.15 A q-wise independent family of hash functions from \mathcal{X} to \mathcal{Y} is a set $\{h_s\}_{s\in\mathcal{S}}$ of functions $h_s: \mathcal{X} \to \mathcal{Y}$ with the following property,

$$\forall_{\text{distinct } x_1, \dots, x_q \in \mathcal{X}} \forall_{y_1, \dots, y_q \in \mathcal{Y}} \quad \Pr[h_S(x_1) = y_1 \wedge \dots \wedge h_S(x_q) = y_q] = |\mathcal{Y}|^{-q}. \tag{3.20}$$

Start with an algorithm that has "security δ " when used with a perfect key.

Compress to size $\ell \leq H_{\infty}(X) - 4 - \log \log \frac{1}{\varepsilon}$ using $q = 6 + \lceil \log \frac{1}{\varepsilon} \rceil$. Then the security of the algorithm goes from δ to

 $\delta' = 2\delta + \varepsilon.$