
True random number generation

Anyone who considers
arithmetical methods of
producing random digits
is, of course, in a state of sin.

 – John von Neumann (1951)

B. Škorić, Physical Aspects of Digital Security, Chapter 3

The generation of random numbers is too important to be left to chance.
– Robert R. Coveyou

True random numbers

Not Pseudo-Random Number Generator
¥ PRNG is algorithm operating on some seed
¥ TRNG measures physical state of random system

Usual procedure
¥ measurement of truly random system
¥ apply algorithm improving uniformity
¥ optional: then use as seed in PRNG

2

Sources of randomness

¥noisy resistors

¥ring oscillators

¥avalanche diodes

¥metastable ßipßops

¥antenna noise

¥acoustic noise

¥nuclear decay

¥unstable lasers

¥...

3

Ring oscillator

Odd number of inverters in circular conÞguration
¥ conßicting logical state
¥ oscillation between 0/1 state
¥ propagation time partly random
¥ exact timing very sensitive to thermal noise

- ÔjitterÕ

10 0 1
1 10 0

4

Extracting randomness from jitter
¥ XOR several oscillators (analog operation)
¥ sample the analog signal
¥ force to logical 0 or 1

- exact time of flank is Gaussian-distributed
¥ Þll rate f: fraction of time where signal is unpredictable

- can be tuned by choosing k, l

bit
analog

5

Noisy resistor

Equivalent circuit 
for resistor:

voltage caused 
by thermal noise

⟨V2⟩ = 4kT R ΔfAmplitude has Gaussian distribution

k = Boltzmann constant 
T = temperature (Kelvin)
R = resistance 
Δf = measured range of frequencies

Johnson & Niquist, 1928

6

The Intel RNG

difference between 
two resistors

Slow random clock 
drives measurements 
of fast clock

¥ improved version of von Neumann algorithm
¥ variable bit rate
¥ 75 Kbit/s after post-processing

Component of the Intel 80802 chip
[≈1999]

7

Radio-active decay

¥Unstable atomic nucleus
¥Exact moment of decay unpredictable
¥λ = prob of decay per time unit
¥Pr[nucleus still exists] = exp(−λt).
¥Very tamper-proof!

Start with N nuclei; 
Count #clicks in time Δt. 
 
Pr[#clicks is k] =

20 CHAPTER 3. RANDOM NUMBER GENERATION

the probability that it still exists at time t is given by e��t , where ! is the decay rate.
(The half-life is (! ln 2)�1.) If there are N0 nuclei at time t = 0, then the number at time
t is expected to beN (t) = N0e��t . The number of decays per unit time is expected to be
! dN/dt = ! N (t). Some isotopes have decay products that are easily detectable, e.g. with
a Geiger counter. Consider a slowly decaying source, i.e.N can be treated as a constant.
Then the number of ÔclicksÕ of the Geiger counter in a Þxed length of time" t follows a
Poisson distribution:

Pr[#clicks = k] = e�N �⇤t (N ! " t)k

k!
. (3.1)

Many other systems have been proposed/studied, such as noisy avalanche diodes, metastable
ßipßops, lava lamps, and low-pressure acoustic noise.
IntelÕs random number generator uses the ampliÞed thermal noise of undriven resistors. The signal
of neighbouring resistors is subtracted to eliminate global e! ects.
The physical process underlying the TRNG may be sensitive to outside inßuences such as temper-
ature, electromagnetic Þelds, light, pressure etc. When a TRNG has to operate in an environment
controlled by an adversary, special attention must be paid to design the TRNG such that outside
e! ects are Þltered out by the measurement circuit, or at least detected in the postprocessing steps.

3.3 Making it uniform

3.3.1 Known continuous source

A precisely known continuous source is the easiest case. Whatever the distribution looks like,
there is a generic way of turning it into a uniform variable on [0, 1]. This is possible because there
is a whole continuum of coordinate re-parametrisations.
Let u be a monotonic function, andY = u(X). Let X # f . We can derive the distribution g(y)
of Y as follows. First we observe that

Pr[X $ (x, x + d x)] = Pr[Y $ (u(x), u(x + d x))] (3.2)

which can be written as
f (x)dx = g(y)dy (3.3)

with d y = u⇥(x)dx. (See Fig.3.1.) It immediately follows that

g(y) =
f (x)

dy/dx
=

f (x)
u⇥(x)

. (3.4)

Exercise 3.1 Do Eqs. (3.2)–(3.4) still hold if u is not monotonic?

Theorem 3.2 Let X $ R, X # f , where f is known exactly. Let F be the cumulative distribution
function. Let Y = F (X). Then Y is uniform on [0, 1].

Proof: We know that F (X) $ [0, 1]. Next we want to know the distribution function g of Y . Since
Y is a monotonic function of X we can apply (3.4) with u(x) replaced by F (x).

g(y) =
f (x)
F ⇥(x)

= 1 . (3.5)

!

Example 3.1 The normal distribution. Consider X # Nµ⌅, where Nµ⌅(x) = 1
⌅
⌅

2⇤
exp[! (x�µ)2

2⌅2].

The cdf is F (x) = 1
2 + 1

2 Erf x�µ
⌅
⌅

2
. (Erf is the ‘error function’, the primitive of e�x 2

.)

Once you have a uniform pdf, it is easy to generate uniform bits. Divide the interval [0, 1] into
2n bins of equal width, labeled q = 0 , · · · , 2n ! 1. (Fig. 3.2b shows the casen = 3.) Do a
measurement ofY . Look in which bin y sits and output the (binary) label q(y) of that bin. This
yields n independent unbiased bits.

Poisson distribution
8

Algorithms for randomness extraction

Known continuous distribution f(x)
¥ generic procedure
¥ uses cumulative distr. function (cdf)

Known discrete distribution
¥ cdf + binning
¥ von Neumann algorithm
¥ piling it up: XOR-ing bits together
¥ resilient functions

Unknown discrete distribution
¥ universal hash functions
¥ q-wise independent hashing

9

Known continuous distribution

10

Continuous random variables

¥ X ∼ f

¥ Cumulative distribution function F
❖ Prob[X<x] = F(x).

¥ The variable Y≔F(X) is uniform!

3.3. MAKING IT UNIFORM 21

Figure 3.1: The probability f(x)dx is identical to g(y)dy, with dy = u�(x)dx.

Figure 3.2: (a) N intervals of equal area (i.e. probability) under the Gaussian curve f(x), for
N = 8. The boundary xi between regions i ! 1 and i lies at F (xi) = i/N . (b) The corresponding
picture, but now for the variable Y = F (X) " [0, 1]. The pdf of Y is uniform, and the equiprobable
intervals all have equal width 1/N .

3.3.2 Known discrete source; di ! erence with the continuum case

Consider a discrete pmf {pi}n
i=1 for some RV X " R which can take values {xi}n

i=1. You could try
to represent the pmf as a fake pdf f(x),

f(x) =
n�

i=1

pi! (x ! xi), (3.6)

and then apply Theorem 3.2 to f(x), obtaining Y = F (X),

Y =
n�

i=1

pi�(X ! xi). (3.7)

Does this yield a uniform Y ? No! The delta functions in (3.6) are not the smeared-out functions
(2.4) before the limit " # 0, but after the limit. The source X cannot really take values other than
xi. We end up with a discrete RV Y with the following pmf,

Equiprobable intervals

11

Known discrete distribution

12

Discrete random variables

LetÕs try the cdf trick

3.3. MAKING IT UNIFORM 21

Figure 3.1: The probability f (x)dx is identical to g(y)dy, with dy = u!(x)dx.

Figure 3.2: (a) N intervals of equal area (i.e. probability) under the Gaussian curvef (x), for
N = 8 . The boundary xi between regionsi � 1 and i lies at F (xi) = i/N . (b) The corresponding
picture, but now for the variableY = F (X) ⇤ [0, 1]. The pdf of Y is uniform, and the equiprobable
intervals all have equal width1/N .

3.3.2 Known discrete source; di�erence with the continuum case

Consider a discrete pmf{pi }n
i =1 for some RV X ⇤ R which can take values{xi }n

i =1. You could try
to represent the pmf as a fake pdff (x),

f (x) =
n�

i =1

pi �(x � xi), (3.6)

and then apply Theorem 3.2 to f (x), obtaining Y = F (X),

Y =
n�

i =1

pi ! (X � xi). (3.7)

Does this yield a uniform Y? No! The delta functions in (3.6) are not the smeared-out functions
(2.4) beforethe limit ⇥ ⇥ 0, but after the limit. The source X cannot really take values other than
xi . We end up with a discrete RV Y with the following pmf,

3.3. MAKING IT UNIFORM 21

Figure 3.1: The probability f (x)dx is identical to g(y)dy, with dy = u!(x)dx.

Figure 3.2: (a) N intervals of equal area (i.e. probability) under the Gaussian curvef (x), for
N = 8 . The boundary xi between regionsi � 1 and i lies at F (xi) = i/N . (b) The corresponding
picture, but now for the variableY = F (X) ⇤ [0, 1]. The pdf of Y is uniform, and the equiprobable
intervals all have equal width1/N .

3.3.2 Known discrete source; di ! erence with the continuum case

Consider a discrete pmf{ pi } n
i =1 for some RV X ⇤ R which can take values{ xi } n

i =1. You could try
to represent the pmf as a fake pdff (x),

f (x) =
n!

i =1

pi ! (x � xi), (3.6)

and then apply Theorem 3.2 to f (x), obtaining Y = F (X),

Y =
n!

i =1

pi ! (X � xi). (3.7)

Does this yield a uniform Y? No! The delta functions in (3.6) are not the smeared-out functions
(2.4) beforethe limit " ⇥ 0, but after the limit. The source X cannot really take values other than
xi . We end up with a discrete RV Y with the following pmf,

not uniform!

Close to cdf  
of uniform  
distribution

not perfect,  
but it may do

13

von Neumann algorithm

Source = stream of bits from biased coin. 
How to remove the bias?

3.3. MAKING IT UNIFORM 23

Example 3.3 Consider the pmf with p1 = p2 = 1
4 and p3 = p4 = p5 = p6 = 1

8 . The Shannon
entropy is 2.5 bits and the min-entropy is 2 bits. By groupingp3, p4 together and alsop5, p6, the
uniform pmf { 1

4 , 1
4 , 1

4 , 1
4 } is obtained; its entropy is 2 bits.

Example 3.4 Consider the pmf { 1
3 , 1

6 , 1
5 , 3

10 } . It has Shannon entropy 7
15 + 1

5 log2 3 + 1
2 log2 5 �

1.78 bits, and min-entropy log2 3 � 1.58 bits. By grouping 1
3 + 1

6 = 1
2 and 1

5 + 3
10 = 1

2 we
get a perfectly uniform pmf { 1

2 , 1
2 } which has 1 bit of entropy. Notice that this is less than the

min-entropy.

The min-entropy plays an important role here. If we group probabilities as in the examples above,
the number of perfectly uniform bits that we can extract is bounded by the min-entropy. This
follows from the fact that the bins cannot be smaller than pmax .

Exercise 3.2 What goes wrong when the bins are smaller thanpmax ?

3.3.4 More generic algorithms

The von Neumann algorithm

Consider a sequence of independent biased coin ßips. The von Neumann algorithm removes the
bias, but is wasting some of the sourceÕs entropy. The algorithm takes a pair of bits (b1, b2) as
input, and outputs the following:

b1 = b2 : no output

b1 ⇥= b2 : output b1. (3.8)

Then the algorithm takes the next two bits of the sequence, etc.

Exercise 3.3 (a) Prove that the output of the von Neumann algorithm is uniform, given that the
source bits all have the same bias.
(b) How much entropy is wasted?

An improvement of the von Neumann algorithm

Several improved de-biasing schemes have been developed. One of them takes four bits as input
and outputs either zero, one or two bits. See the table below.

input Neumann improved
0000 - -
0001 0 00
0010 1 10
0011 - 0
0100 0 01
0101 00 00
0110 01 01
0111 0 01
1000 1 11
1001 10 10
1010 11 11
1011 1 11
1100 - 1
1101 0 00
1110 1 10
1111 - -

Exercise 3.4 (a) Prove that the output of the improved von Neumann algorithm is uniform, given
that the source bits all have the same bias. (b) How much entropy is wasted?

Look at input pairs (b1, b2)

b1 b2 output
0 0 --
0 1 0
1 0 1
1 1 --

Question: 
1. Why does this work? 
2. How much entropy is lost?

14

15

von Neumann algorithm: entropy loss

Solution of Exercise 3.3
(a) Let’s say the probability of generating a ‘1’ is p. The events (b1, b2) = (1, 0) and (b1, b2) = (0, 1)
have equal probability p(1� p). Other events yield no bit.
(b) Consider n source bits for some integer n. Then the entropy of the source is nh(p). The
number of bits that is left after application of the von Neumann algorithm is on average (n/ 2) á
2p(1� p). They are perfectly uniform and carry one bit of entropy each. Thus the entropy loss is
n[h(p)� p(1� p)]. The graph below shows the retained fraction p(1� p)/h (p) as a function of p.
For good sources, 3/ 4 of the entropy is thrown away; for very bad sources, almost all entropy.

The entropy of the output of the von Neumann algorithm can also be calculated in a more formal
way. Let Y 2 { ! , 0, 1} be the output when the von Neumann algorithm is applied to two input
bits. Here ‘! ’ means: no output. Let Z (Y) 2 { yes,no} be an indicator that says if output is
generated. If Y = ! then Z = no, otherwise Z = yes.
The amount of useful entropy in the output is H(Y)� H(Z (Y)) = H(Y|Z). The quantity H(Y) is
not the correct thing to look at, because the outcome Y = ! is not useful. We have to subtract
H(Z), the ‘useless’ part of the information.

H(Y|Z) = EzH(Y|Z = z) = Pr[Z = no]H(Y|Z = no) + Pr[Z = yes]H(Y|Z = yes)

= Pr[Z = no] á0 + 2p(1� p) á1

= 2p(1� p).

We have H(Y|Z = no) = 0 because knowing that Z = no completely reveals Y .
We have H(Y|Z = yes) = 1 because the output bit, when it exists, is uniform. (See subquestion a.)

p

p(1-p)/h(p)
Fraction of retained entropy

At most 1/4 of the entropy is kept

Improved von Neumann

3.3. MAKING IT UNIFORM 23

Example 3.3 Consider the pmf with p1 = p2 = 1
4 and p3 = p4 = p5 = p6 = 1

8 . The Shannon
entropy is 2.5 bits and the min-entropy is 2 bits. By groupingp3, p4 together and alsop5, p6, the
uniform pmf { 1

4 , 1
4 , 1

4 , 1
4 } is obtained; its entropy is 2 bits.

Example 3.4 Consider the pmf { 1
3 , 1

6 , 1
5 , 3

10 } . It has Shannon entropy 7
15 + 1

5 log2 3 + 1
2 log2 5 !

1.78 bits, and min-entropy log2 3 ! 1.58 bits. By grouping 1
3 + 1

6 = 1
2 and 1

5 + 3
10 = 1

2 we
get a perfectly uniform pmf { 1

2 , 1
2 } which has 1 bit of entropy. Notice that this is less than the

min-entropy.

The min-entropy plays an important role here. If we group probabilities as in the examples above,
the number of perfectly uniform bits that we can extract is bounded by the min-entropy. This
follows from the fact that the bins cannot be smaller than pmax .

Exercise 3.2 What goes wrong when the bins are smaller thanpmax ?

3.3.4 More generic algorithms

The von Neumann algorithm

Consider a sequence of independent biased coin ßips. The von Neumann algorithm removes the
bias, but is wasting some of the sourceÕs entropy. The algorithm takes a pair of bits (b1, b2) as
input, and outputs the following:

b1 = b2 : no output

b1 "= b2 : output b1. (3.8)

Then the algorithm takes the next two bits of the sequence, etc.

Exercise 3.3 (a) Prove that the output of the von Neumann algorithm is uniform, given that the
source bits all have the same bias.
(b) How much entropy is wasted?

An improvement of the von Neumann algorithm

Several improved de-biasing schemes have been developed. One of them takes four bits as input
and outputs either zero, one or two bits. See the table below.

input Neumann improved
0000 - -
0001 0 00
0010 1 10
0011 - 0
0100 0 01
0101 00 00
0110 01 01
0111 0 01
1000 1 11
1001 10 10
1010 11 11
1011 1 11
1100 - 1
1101 0 00
1110 1 10
1111 - -

Exercise 3.4 (a) Prove that the output of the improved von Neumann algorithm is uniform, given
that the source bits all have the same bias. (b) How much entropy is wasted?

¥generates more bits
¥less wasteful

16

Enumeration of permutations

x∊{0,1} n containing t 1s

L is uniform on

17

18

Numerical example: 
n = 16 
t = 5 or 11

()n
t = 4368 = 212 + 272

L ∊ {0, ... , 4367}

If L > 4095: No output!
If L < 4096: Output binary representation of L.

This yields 12 perfect bits with prob. 4096/4368
and no output with prob. 272/4368.

! On average 11.3 bits

Original entropy 
" 16 h(5/16) " 14.3

Piling up lemma

bias αi = Pr[Xi=1] − Pr[Xi=0]
 |αi| ≤ 1

Y = X1 ⨁ X2 ⨁ ... ⨁ Xn

Combined bias Pr[Y=1] − Pr[Y=0] = (-1)n-1 Πi αi

¥ reduced bias

¥ even one occurrence αi=0 already gives unbiased Y.

¥ but ... lots of entropy wasted

19

Post-processing
¥ Apply resilient function Ψ insensitive to k bits
¥ Def. of [n,m,k]-resilient:
‣ x∈{0,1}n, Ψ(x)∈{0,1}m. Fix any k bits of x.
‣ Prob[Ψ(X)=y | k bits of X] is uniform on {0,1}m.

• Can be realized using error-correcting code

Resilient functions

bit

analog

Expected: 
k out of n bits predictable,
but ... 
we don't know which ones!

20

Unknown discrete distribution

21

Worst case: Unknown distribution

Definition of a strong extractor "Ext" 
for source min-entropy m, length l	and non-uniformity ! :
¥ Given a source X with H∞(X) ≥ m
¥ uniformly drawn public randomness R
¥ Z = Ext(X, R) ∈ {0,1}l.

3.4. PRIVACY AMPLIFICATION USING PUBLIC RANDOMNESS 25

3.4 Privacy ampliÞcation using public randomness

Surprisingly, there exists a generic way to map some X with barely known pmf to a short bitstring
whose pmf is close to uniform. There is a price to pay of course: the closer you want to be to
uniform, the shorter the string. Compared to the previous section the entropy loss is very big.
The extraction of a short uniform secret from a non-uniform secret is known as privacy ampliÞca-
tion . You start with a variable about which the adversary has some knowledge (e.g. the largest
pi), and then you hash it down to something about which he knows nothing that can give him
any advantage. Hence the ‘privacy’ is ‘amplified’.
One of the essential ingredients is a uniformly random ‘seed’ to aid the extraction. This may look
like cheating (our goal is to obtain uniform randomness) but it is not: the seed is publicly known,
whereas the extracted string is secret.

DeÞnition 3.2 (Strong extractor) Let Ext:{ 0, 1} n ! { 0, 1} ! " { 0, 1} ! be an e! ciently com-
putable function that takes as arguments ann-bit string X and a random seedR, and outputs an
! -bit string (! <n). Let Z = Ext(X, R). The function Ext is called a strong extractor for source
min-entropy m and nonuniformity " if for all distributions of X with H" (X) # m it holds that

! (ZR ; U! R) $ " . (3.13)

Here U! is an RV uniform on { 0, 1} ! . The notation ! (ZR ; U! R) stands for the statistical dis-
tance between on the one hand the joint distribution ofZ and R and on the other hand the joint
distribution of U! and R.

In words, Def. 3.2 says that a strong extractor maps X to some Z such that Z is close to uniform
(" stat. distance), even if the seed R is revealed to the adversary.

Exercise 3.6 Show that (3.13) can be written as

Er ! (Z |R = r ; U!) $ " . (3.14)

In this form the conditioning on R is more clearly visible.

DeÞnition 3.3 (Extractable randomness) Let X %X , Y %Y be RVs, with (X, Y) & P. Let
R be uniformly random on R. For any " > 0 we say that a Þnite setZ is " -allowed if there exists
a function F : X ! R " Z such that

! (F (X, R)Y R; UY R) $ " ,

whereU is a random variable uniformly distributed onZ , independent ofX ,Y ,R. The "-extractable
randomness ofX conditioned on Y is deÞned as

! "
ext (X |Y) = max { log |Z| : Z is " -allowed} .

You may wonder why the statistical distance is used in Defs. 3.2, 3.3, and not some other measure
such as e.g. the KL distance D (Z ||U!), or H(Z |R). As always this has to do with the available
proofs for actual constructions that satisfy the definition. There is a class of functions called
Universal Hash Functions(UHF) [1] that precisely fits the requirements of a strong extractor. We
will give their definition, show that they are useful for privacy amplification, and then give some
examples of UHFs.

DeÞnition 3.4 (Universal family of hash functions) Let R, X and T be Þnite sets. Let
{ " r } r # R be a family of hash functions fromX to T . The family { " r } r # R is called universal i" ,
for R drawn uniformly from R, it holds that

Prob[" R (x) = " R (x$)] $ 1/ |T |

for all x, x $ %X with x$ '= x.

Uniform on {0,1}l

In words: 
Ext(X,R), for known R, is ! away from uniform.

22

Universal hash functions

Definition: 
Universal family of hash functions {Φr}
¥ Functions Φr from X to T.
¥ Random seed R, uniformly chosen
¥ For any fixed x,x’ with x’ ≠ x:

3.4. PRIVACY AMPLIFICATION USING PUBLIC RANDOMNESS 25

3.4 Privacy ampliÞcation using public randomness

Surprisingly, there exists a generic way to map someX with barely known pmf to a short bitstring
whose pmf is close to uniform. There is a price to pay of course: the closer you want to be to
uniform, the shorter the string. Compared to the previous section the entropy loss is very big.
The extraction of a short uniform secret from a non-uniform secret is known asprivacy ampliÞca-
tion. You start with a variable about which the adversary has some knowledge (e.g. the largest
pi), and then you hash it down to something about which he knows nothing that can give him
any advantage. Hence the ÔprivacyÕ is ÔampliÞedÕ.
One of the essential ingredients is a uniformly random ÔseedÕ to aid the extraction. This may look
like cheating (our goal is to obtain uniform randomness) but it is not: the seed is publicly known,
whereas the extracted string issecret.

DeÞnition 3.2 (Strong extractor) Let Ext:{ 0, 1} n ! { 0, 1} ! " { 0, 1} ! be an e! ciently com-
putable function that takes as arguments ann-bit string X and a random seedR, and outputs an
! -bit string (! <n). Let Z = Ext(X, R). The function Ext is called a strong extractor for source
min-entropy m, output length ! and nonuniformity " if for all distributions of X with H" (X) # m
it holds that

! (ZR; U! R) $ " . (3.13)

Here U! is an RV uniform on { 0, 1} ! . The notation ! (ZR; U! R) stands for the statistical dis-
tance between on the one hand the joint distribution ofZ and R and on the other hand the joint
distribution of U! and R.

In words, Def. 3.2 says that a strong extractor mapsX to someZ such that Z is close to uniform
(" stat. distance), even if the seedR is revealed to the adversary. In the literature the notation
(m, ! , ")-strong extractor is sometimes used.

Exercise 3.6 Show that (3.13) can be written as

Er ! (Z |R = r ; U!) $ " . (3.14)

In this form the conditioning on R is more clearly visible.

DeÞnition 3.3 (Extractable randomness) Let X %X , Y %Y be RVs, with (X, Y) & P. Let
R be uniformly random on R. For any " > 0 we say that a Þnite setZ is " -allowed if there exists
a function F : X ! R " Z such that

! (F (X, R)Y R; UY R) $ " ,

whereU is a random variable uniformly distributed onZ , independent ofX ,Y ,R. The "-extractable
randomness ofX conditioned on Y is deÞned as

! "
ext (X |Y) = max { log |Z| : Z is " -allowed} .

You may wonder why the statistical distance is used in Defs. 3.2, 3.3, and not some other measure
such as e.g. the KL distanceD(Z ||U!), or H(Z |R). As always this has to do with the available
proofs for actual constructions that satisfy the deÞnition. There is a class of functions called
Universal Hash Functions(UHF) [1] that precisely Þts the requirements of a strong extractor. We
will give their deÞnition, show that they are useful for privacy ampliÞcation, and then give some
examples of UHFs.

DeÞnition 3.4 (Universal family of hash functions) Let R, X and T be Þnite sets. Let
{ " r } r #R be a family of hash functions fromX to T . The family { " r } r #R is called universal i" ,
for R drawn uniformly from R, it holds that

Prob[" R (x) = " R (x$)] $ 1/ |T |

for all x, x $ %X with x$ '= x.Existence of univ. hash functions guarantees 
existence of strong extractors for certain parameter range!

We will see this in a couple of slides ...
23

Almost-universal hash functions

universal for η = 1/ |T |

30 CHAPTER 3. RANDOM NUMBER GENERATION

DeÞnition 3.8 (Strong extractor) Let Ext:{ 0, 1} n ! { 0, 1} ! " { 0, 1} ! be an e! ciently com-
putable function that takes as arguments ann-bit string X and a random seedR, and outputs an
! -bit string (! <n). Let Z = Ext(X, R). The function Ext is called a strong extractor for source
min-entropy m, output length ! and nonuniformity " if for all distributions of X with H" (X) # m
it holds that

! (ZR; U! R) $ " . (3.15)

Here U! is an RV uniform on { 0, 1} ! . The notation ! (ZR; U! R) stands for the statistical dis-
tance between on the one hand the joint distribution ofZ and R and on the other hand the joint
distribution of U! and R.

In words, Def. 3.8 says that a strong extractor mapsX to someZ such that Z is close to uniform
(" stat. distance), even if the seedR is revealed to the adversary. In the literature the notation
(m, ! , ")-strong extractor is sometimes used.

Exercise 3.6 Show that (3.15) can be written as

Er ! (Z |R = r ; U!) $ " . (3.16)

In this form the conditioning on R is more clearly visible.

DeÞnition 3.9 (Extractable randomness) Let X %X , Y %Y be RVs, with (X, Y) & P. Let
R be uniformly random on R. For any " > 0 we say that a Þnite setZ is " -allowed if there exists
a function F : X ! R " Z such that

! (F (X, R)Y R; UY R) $ " ,

whereU is a random variable uniformly distributed onZ , independent ofX ,Y ,R. The "-extractable
randomness ofX conditioned on Y is deÞned as

! "
ext (X |Y) = max { log |Z| : Z is " -allowed} .

You may wonder why the statistical distance is used in Defs. 3.8, 3.9, and not some other measure
such as e.g. the KL distanceD(Z ||U!), or H(Z |R). As always this has to do with the available
proofs for actual constructions that satisfy the deÞnition. There is a class of functions called
Universal Hash Functions(UHF) [5] that precisely Þts the requirements of a strong extractor. We
will give their deÞnition, show that they are useful for privacy ampliÞcation, and then give some
examples of UHFs.

DeÞnition 3.10 (Universal family of hash functions) Let R, X and T be Þnite sets. Let
{ " r } r # R be a family of hash functions fromX to T . The family { " r } r # R is called universal i" ,
for R drawn uniformly from R, it holds that

Prob[" R (x) = " R (x$)] $ 1/ |T |

for all x, x $ %X with x$ '= x.

(The collision probability |T |%1 is what you would get from a random oracle.) We will see later
on that it can have some advantages to relax the deÞnition a little bit. Hash functions that allow
a bit higher collision probability are called almost universal [26].

DeÞnition 3.11 (Almost universal family of hash functions) Let # # 0 be a constant. Let
R , X and T be Þnite sets. Let{ " r } r # R be a family of hash functions fromX to T . The family
{ " r } r # R is called #-almost universal i" , for R drawn uniformly from R, it holds that

Prob[" R (x) = " R (x$)] $ #

for all x, x $ %X with x$ '= x.

24

Leftover hash lemma

Distance of F(X,R) from uniformity, given R

Proof is rather long, see appendix in lecture notes.

3.4. PRIVACY AMPLIFICATION USING PUBLIC RANDOMNESS 31

Note that a 1/ |T |-almost universal family of hash functions is universal.
From the existence of (almost) universal hash functions it can be proven that for some combinations
of parameters there always exists a strong extractor. There is a famous statement known as the
leftover hash lemma.

Theorem 3.12 (Leftover hash lemma) Let X ! X be a random variable. Let ! " 0 be a
constant. Let F : X # R $ { 0, 1} ! be a2! ! (1 + !)-almost universal family of hash functions, with
seedR ! R. Then

! (F (X, R)R; U! R) %
1
2

!
! + 2 ! ! H2 (X) , (3.17)

where H2(X) is the R«enyi entropy as deÞned in Section 2.5.

Corollary 3.13 The "-extractable randomness ofX given Y can be bounded as

#"
ext (X |Y) " H2(X |Y) + 2 & 2 log

1
"

, (3.18)

where H2(X |Y) is the conditional R«enyi entropy (DeÞnition 2.25).

Proof of Corollary 3.13: We start from (3.17) with ! = 0, because! = 0 is optimal for extraction.
We consider the variableX |Y = y, i.e. X at given y. This gives ! (F (X |Y = y, R)R; U! R) %
1
2

'
2! ! H2 (X |Y = y) = 1

2 2! / 2
" #

x p2
x |y . We apply the expectation Ey to both sides of the inequal-

ity. The left hand side yields Ey ! (F (X |Y = y, R)R; U! R) = ! (F (X, R)RY ; U! RY), i.e. the
statistical distance betweenF (X, R) and uniformity, at given R and Y . The right hand side is
1
2 2! / 2Ey

" #
x p2

x |y = 2 ! 1+ ! / 2! 1
2 H2 (X |Y) . So we have obtained

! (F (X, R)RY ; U! RY) % 2! 1+ ! / 2! 1
2 H2 (X |Y) . (3.19)

Now we put the statistical distance ! (á á á; á á á) to " . This gives us the largest possible# such
that the extraction using UHFs works. Multiplying both sides of the equation by 2 and then
squaring gives 4"2 = 2 ! ! H2 (X |Y) . Taking the logarithm on both sides and then solving for# yields
#= H2(X |Y) + 2 & 2 log(1/ "). !
There is a rather unpleasant property of (3.18). The ÔpenaltyÕ term&2 log(1/ ") depends on the
target uniformity, not on the improvement gained from hashing!

[The rest of Section 3.4.1 is a proof of the Leftover Hash Lemma, and is not part of
the exam.]

The proof of Theorem 3.12 is rather long, so we set it up in stages. We start with a number of
lemmas that will be invoked by the proof.

Lemma 3.14 (JensenÕs inequality for concave functions) Let $ be a real concave function.
Let n be a positive integer. Leta1, . . . , an be positive weights andx1, . . . , xn be real numbers. Then

$
$ # n

i =1 ai xi# n
i =1 ai

%
"

n
i =1 ai $(xi)# n

i =1 ai
.

Lemma 3.15 Let q1, . . . , qm be real numbers satisfying
m

s=1 qs = 1 . Then it holds that

m&

s=1

q2
s "

1
m

.

Proof: 0 %
#

s(qs & 1
m)2 =

#
s q2

s & 2
m

#
s qs +

#
s 1/m 2 =

#
s q2

s & 1
m . !

Lemma 3.16 Let Z ! Z be a RV. Then the statistical distance betweenZ and U uniform on Z
can be bounded as

! (Z, U) % 1
2

'
|Z|

&

z" Z

p2
z & 1. (3.20)

25

The H2 is the RŽnyi entropy of order 2,

H2(X) = ! log ∑x (px)2

When is extractor guaranteed to exist?

Forget about δ for the moment,

X

Set this to !

Quality of 
the source

Penalty for demanding 
!- uniformity

Lots of entropy wasted!

26 CHAPTER 3. RANDOM NUMBER GENERATION

(The collision probability |T |! 1 is what you would get from a random oracle.) We will see later
on that it can have some advantages to relax the deÞnition a little bit. Hash functions that allow
a bit higher collision probability are called almost universal [4].

DeÞnition 3.5 (Almost universal family of hash functions) Let ! ! 0 be a constant. Let
R , X and T be Þnite sets. Let{ ! r } r " R be a family of hash functions fromX to T . The family
{ ! r } r " R is called ! -almost universal i! , for R drawn uniformly from R, it holds that

Prob[! R (x) = ! R (x#)] " !

for all x, x # # X with x# $= x.

Note that a 1/ |T |-almost universal family of hash functions is universal.
From the existence of (almost) universal hash functions it can be proven that for some combinations
of parameters there always exists a strong extractor. There is a famous statement known as the
leftover hash lemma.

Theorem 3.4 (Leftover hash lemma) Let X # X and Y be jointly distributed RVs. Let " ! 0
be a constant. LetF : X %R & { 0, 1} ! be a2! ! (1 + ")-almost universal family of hash functions,
with seedR # R. Then

" (F (X, R)Y R; U! Y R) "
1
2

!
" + 2 ! ! eH2 (X |Y) . (3.15)

In the literature you will often Þnd variants of the leftover hash lemma with min-entropy and/or
worst-case conditioning instead of"H2(X |Y). Eq. (3.15) is the sharpest formulation.

Corollary 3.1 The extractable randomness ofX given Y can be bounded as

#"
ext (X |Y) ! "H2(X |Y) + 2 ' 2 log

1
$

. (3.16)

Proof of Corollary 3.1: In (3.15) we take " = 0 and demand that the right-hand-side is $. This
gives us the largest possible# such that the extraction using UHFs works. Solving for # yields
#= "H2(X |Y) + 2 ' 2 log(1/ $). !
There is a rather unpleasant property of (3.16). The ÔpenaltyÕ term' 2 log(1/ $) depends on the
target uniformity, not on the improvement gained from hashing!
The proof of Theorem 3.4 is rather long, so we set it up in stages. We start with a number of
lemmas that will be invoked by the proof.

Lemma 3.1 (JensenÕs inequality for concave functions) Let % be a real concave function.
Let n be a positive integer. Leta1, . . . , an be positive weights andx1, . . . , xn be real numbers. Then

%
$ n

i =1 ai xi$ n
i =1 ai

%
!

$ n
i =1 ai %(xi)$ n

i =1 ai
.

Lemma 3.2 Let q1, . . . , qm be real numbers satisfying
$ m

s=1 qs = 1 . Then it holds that

m&

s=1

q2
s !

1
m

.

Proof: 0 "
$

s(qs ' 1
m)2 =

$
s q2

s ' 2
m

$
s qs +

$
s 1/m 2 =

$
s q2

s ' 1
m . !

Lemma 3.3 Let Z # Z be a RV. Then the statistical distance betweenZ and U uniform on Z
can be bounded as

" (Z, U) " 1
2

'
|Z|

&

z" Z

p2
z ' 1. (3.17)

If l	≤ then UHF gives Stat.dist ≤ !

26

q-wise independent hashing

¥ Very recent result [Dodis et al. 2014].
¥ Limited use compared to UHF

- MACs, signatures, keyed hashes

DeÞnition similar to UHF:

27

Result of q-wise independent hashing

Compress to size

using

Then the security of the algorithm goes from δ to

Start with an algorithm that has "security δ" when used
with a perfect key.

28

