True random number generation

Anyone who considers
arithmetical methods of
producing random digits

is, of course, in a state of sin.

— John von Neumann (1951)

The generation of random numbers is too important to be left to chance.
— Robert R. Coveyou

B. Skori¢, Physical Aspects of Digital Security, Chapter 3



True random numbers

Not Pseudo-Random Number Generator
¥ PRNG Is algorithm operating on some seed
¥ TRNG measures physical state of random system

Usual procedure

¥ measurement of truly random system
¥ apply algorithm improving uniformity
¥ optional: then use as seed in PRNG




Sources of randomness

¥NOoISy resistors
¥ring oscillators
¥avalanche diodes
¥metastable RBipl3ops
¥antenna noise
¥acoustic noise
¥nuclear decay
¥unstable lasers

¥...



Ring oscillator

Odd number of inverters in circular conbguration
¥ conflicting logical state
¥ oscillation between 0/1 state
¥ propagation time partly random
¥ exact timing very sensitive to thermal noise
- OjitterO

idealized waveform

with uncertain transition

1 0 1 0
0) 1 0 1
,—DO -{>O -DO ---l




Extracting randomness from |itter

¥ XOR several oscillators (analog operation)

¥ sample the analog signal
¥ force to logical O or 1

- exact time of flank is Gaussian-distributed
¥ pbll rate f: fraction of time where signal is unpredictable

- can be tuned by choosing k, |
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Noisy resistor

Equivalent circuit | |

for resistor:

voltage caused
by thermal noise

Amplitude has Gaussian distribution [(\2) = 4kT RAf

k = Boltzmann constant Johnson & Niquist, 192¢
T = temperature (Kelvin)
R = resistance

Af = measured range of frequencies




The Intel RNG

Component of the Intel 80802 chip

difference between [=1999]
two resistors

Noizs Voltage High-

Amplifi » Controlled Speed
mpiitier Oscillator Oscillator

Johnson Thermal
Noise Source Y . Slow random clock
(Resistor) Super Latch drives measurements
of fast clock
A 4
Control/ -
Status Reg. FIFO =« Digital Corrector

 ——————————————————————————— -
Bus
¥improved version of von Neumann algorithm
¥variable bit rate
¥'75 Kbit/s after post-processing



Radio-active decay

¥Unstable atomic nucleus

¥Exact moment of decay unpredictable
¥\ = prob of decay per time unit

¥Pr[nucleus still exists] exp(—At).

¥Very tamper-proof!

i
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Start with N nuclel;
Count #clicks in timeAt.
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Poisson distribution
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Algorithms for randomness extraction

Known continuous distribution f(x)
¥ generic procedure
¥ uses cumulative distr. function (cdf)

Known discrete distribution

¥ cdf + binning

¥von Neumann algorithm

¥ piling it up: XOR-Ing bits together
¥resilient functions

Unknown discrete distribution
¥ universal hash functions
¥ g-wise Independent hashing




Known continuous distribution
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Continuous random variables

¥X ~f

¥ Cumulative distribution function F
+ Prob[X<x] = F(x).

¥The variable ¥F(X) is uniform!

Equiprobable intervals

| a(y)

y-F(X)
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Known discrete distribution
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Discrete random variables

LetOs try the cdf trick
F)= S potx —xi)
=1

Px

vvvvvvvvv

' _
(a)
asb Pr(Y<y]
Close to cdf
of uniform |
distribution |
o () ) y
(c)

| N

Y = pi! (X —Xj)

i=1
not uniform!
lJ
y

>
(b)

prob[bin]

not perfect,
but it may do

———> bin number

(d)
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von Neumann algorithm

Source = stream of bits from biased coin.
How to remove the bias?

b, = b, : no output

Look at input pairs (b by) o7 : output by

output

0
1

=l =1

I |O|O

Question
1. Why does this work?

2. How much entropy 1s lost?




von Neumann algorithm: entropy loss

Fraction of retained entropy
p(1-p)/h(p)

253

020 F At most//4 of the entropy Is kept

015k

(.10

.05
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Improved von Neumann

iInput || Neumann | improved
0000 - -
0001 0 00
0010 1 10
0011 - 0
0100 0 01
0101 00 00
0110 01 01
0111 0 01
1000 1 11
1001 10 10
1010 11 11
1011 1 11
1100 - 1
1101 0 00
1110 1 10

1111

¥generates more bits
¥less wasteful
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Enumeration of permutations

Xe{0,1}" containing t 1s

Assign a label L to the permutation that turns 11---10---0 into z.
N N~
t n—t

L is uniform on {0,---, (}) — 1}.
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Numerical example Original entropy
n=16 "16 h(5/16) " 14.3

t=5o0r1l

(Y) = 4368 = 22+ 272
L < {0, ..., 4367}

If L > 4095: No output!
If L <4096: Output binary representation of L.

This yields 12 perfect bits with prob. 4096/4368
and no outputvith prob. 272/4368.
I On average 11.3bits
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Piling up lemma

Y=X1@X2@---@Xn

bias i = Pr[Xi=1] — Pr[Xi=0]
|| = 1

Combined bias Pr[Y=1] - Pr[Y=0] = (-1)™1 I &

¥reduced bias
¥even one occurrenc&i=0 already gives unbiasedY.

¥but ... lots of entropy wasted
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Resilient functions

length [

rs

‘5 N —[ o o Expected:
| k out of n bits predictable,
'l analog but ...
2 <:j| Do e N\ 00 | Daype | sfi hit | We don't know which ones
| : L llip;{]up
| Doome e o ‘
\ clock (f.)
Post-processing

¥ Apply resilient function W insensitive to k bits
¥ Def. of [n,m,K]-resilient:

> Xe{0,1}", W(x)e{0,1}™. Fix any k bits of x.

> Prob[W(X)=y | k bits of X ] is uniform on {0,1}™.
- Can be realized using error-correcting code
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Unknown discrete distribution

21



Worst case: Unknown distribution

Definition of a strong extractor "Ext"

for source min-entropy m, length £ and non-uniformity ! :

¥ Given a source X with He(X) = m
¥ uniformly drawn public randomness R

¥ Z = Ext(X, R) € {0,1}%.

E! (ZIR=r;U)$ "

\

Uniform on{0,1}¢

In words:
Ext(X,R)for known Rs! away from uniform.
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Universal hash functions

Definition:
Universal family of hash functions {®}

¥ Functions @, from X to 7.

¥ Random seed R, uniformly chosen
¥ For any fixed x,x’ with X’ # X:

Prob[" r(X) = " r(X)] $ VT |

Existence of univ. hash functions guarantees
existence of strong extractors for certain parameter range!

We will see this in a couple of slides ...
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Almost-universal hash functions

Debnition 3.11 (Almost universal family of hash functions) Let ## O be a constant. Let
R, X and T be bnite sets. Let{" ;},4r be a family of hash functions fromX to T. The family
{" +}rzr Is called #-almost universal i", for R drawn uniformly from R, it holds that

Prob[" r(x) = " r(x}] $ #

for all x,x%%X with x®= x.

universal fom = 1/ |T|
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Leftover hash lemma

Theorem 3.12 (Leftover hash lemma) Let X ! X be a random variable. Let! " 0O be a
constant. LetF : X # R $ {0,1}' be a2 '(1+ !)-almost universal family of hash functions, with
seedR ! R. Then |

1.
L (FGRIR; UR) %5 1+ 21 Ha00), (3.17)

Distance of F(X,R) from uniformity, given R

Proof is rather long, see appendix in lecture notes

The H is the RZnyi entropy of order 2,
Ha(X) = 'log 2x (px)?
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When is extractor guaranteed to exist!?

Forget abou® for the moment,

1 /- -
A(F(X,R)YR; UYR) < 5%% 90—Hz(X|Y)

—_—

Set this to
. 1
If¢ <= Ho(X[Y)+2" 2|09§then UHF gives Stat.dist!
| AN
Quality of Penalty for demanding
the source - uniformity

Lots of entropy wasted!
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g-wise independent hashing

¥ Very recent result [Dodis et al. 2014].
¥ Limited use compared to UHF
- MACs, signhatures, keyed hashes

Debnition similar to UHF:

Definition 3.15 A g-wise independent family of hash functions from X to Y is a set {hg}ses of
functions hg : X — Y with the following property,

Vdistinct r,,...,z,,ék’vy, ..... Y, EY PI‘[hS(IL‘l) =y1 A A hS(xq) — yq] — |y| 1, (320)
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Result of g-wise independent hashing

Start with an algorithm that has "securty when used
with a perfect key.

. 1
Compress t0 size £ < Hoo(X) — 4 —loglog

usingg =6 + [log =].

Then the security of the algorithm goes fra#o
0 =26 +e.
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