

Evgeny Verbitskiy, Pim Tuyls, Chibuzo Obi, Berry Schoenmakers, Boris Škorić

WISSEC 2008 13&14 November, Eindhoven

Outline

- Key extraction from continuous sources
- Defining properties of a Continuous-Source Fuzzy Extractor
- Partitioning scheme
- What if attacker has better knowledge of the source?

Almost all real-life sources generate *real* numbers, not discrete.

Key extraction

Privacy amplification:

Given a non-uniform source X, derive an L-bit string f(X) as uniformly distributed as possible on $\{0,1\}^L$.

Information reconciliation:

If the source is noisy, then some redundancy data W(X) must be given before privacy amplification is possible.

- biometrics
- PUFs

Fuzzy extractor:

- Does both information reconciliation and privacy amplification.
- Extracts secret key K from noisy source.
- Aims for high entropy H(K | W).

Fuzzy Extractor

Traditionally defined for discrete source X. But most sources are continuous!

- extra step: discretization of X
- degree of freedom that can be exploited

We extend the definition [Buhan et al. 2007] of Continuous-Space Fuzzy Extractor

- Correctness
- Security

[Dodis et al. 2003]

3.2 Fuzzy Extractors

Definition 5. An $(\mathcal{M}, m, \ell, t, \epsilon)$ -fuzzy extractor

avoid

Correctness definitions

- Requires distance measure
- Hard to see failure prob.

- 1. t-correct:

 If d(x, x')<t then K'=K.
- 2. Worst case ϵ -stochastically noise resilient:

$$\forall x \ \text{Prob}[\text{Rep}(X', w_x) = k_x] \ge 1 - \varepsilon$$

3. On average ϵ -stochastically noise resilient: For (k_x, w_x) =Gen(x):

$$\int \text{Prob}[\text{Rep}(X', w_x) = k_x] dx \ge 1 - \varepsilon$$

Security definitions

 $H_{\infty}(X)$ not defined for cont. distribution

- 1. (m,δ) -secure. $H_{\infty}(X) \ge m \Rightarrow \Delta(KW, U_{L}W) \le \delta$.
- 2. Worst case m-secure: $\forall w \ H_{\infty}(K|W=w) \geq m$.
- 3. On average m-secure:

$$\tilde{H}_{\infty}(K \mid W) \ge m$$

average conditioning

Continuous-Space Fuzzy Extractor: Partitioning scheme

Two nested equiprobable partitions

- secret K = outer index
- helper W = inner index

Enrollment

- Measure x.
- k=0.
- Store w=2.

Reconstruction

- Measure x'.
- Read w.
- Go to nearest blue interval.
- Read off k=0.

Gap between (k,w) and (k±1,w) reduces noise.

Partitioning scheme: 2D toy example

Gaps between (k,w) and $(k+\Delta k,w)$ reduce noise.

Properties of the partitioning scheme

$$K \in \{0,1\}^L$$
. $W \in \{0,1\}^b$.

- Security of the extracted key K: H(K|W) = H(K) = L.
 - Helper data reveals nothing about key.
 - Key is uniform.
 - "Worst-case L-secure".
- Leakage about the source X: I(X; W) = H(W) = b.
 - Helper data leaks b bits about raw measurement.
 - Inevitable!
- Correctness properties:
 - depends on specific noise distribution.

What if source distribution is not known exactly?

Partitioning scheme based on best guess

- Key not exactly uniform
- Attacker may have better knowledge of X and exploit it!

Lemma:
$$\tilde{H}_{\infty}(K \mid W) \ge L - \log(1 + \delta 2^{L+b})$$

with
$$\delta = \frac{1}{2} \sum_{k,w} \left| \Pr[K = k \land W = w] - \frac{1}{2^{L+b}} \right|$$

Gaussian case:
$$\delta \leq \frac{\sqrt{(\tilde{\sigma} - \sigma)^2 + (\tilde{\mu} - \mu)^2}}{\min(\sigma, \tilde{\sigma})}$$

Why <u>average</u> conditioning on W?

Attacker does not control the helper data.

Conclusions

- Adapted Fuzzy Extractor definition for non-discrete source
 - correctness and security properties
 - generalization of [Buhan et al.]
- Explicit construction for known prob. densities
 - discretization: exploitable extra degree of freedom
 - nested equiprobable intervals
 - perfectly uniform key
 - noise reduced by gaps between intervals (k,w) and $(k+\Delta k,w)$
- Effect of incomplete knowledge about source
 - worst case assumption: attacker has full knowledge
 - average-case conditioning on W
 - derived bound on min-entropy of extracted key